
1
American Institute of Aeronautics and Astronautics

AIAA–2001-5107

EMBEDDED WEB TECHNOLOGY: APPLYING WORLD WIDE WEB STANDARDS
TO EMBEDDED SYSTEMS

Joseph G. Ponyik and David W. York

National Aeronautics and Space Administration
Glenn Research Center
Cleveland, Ohio 44135

ABSTRACT

Embedded Systems have traditionally been

developed in a highly customized manner. The user
interface hardware and software along with the
interface to the embedded system are typically unique
to the system for which they are built, resulting in extra
cost to the system in terms of development time and
maintenance effort.

World Wide Web standards have been developed
in the passed ten years with the goal of allowing servers
and clients to interoperate seamlessly. The client and
server systems can consist of differing hardware and
software platforms but the World Wide Web standards
allow them to interface without knowing about the
details of system at the other end of the interface.

Embedded Web Technology is the merging of
Embedded Systems with the World Wide Web.
Embedded Web Technology decreases the cost of
developing and maintaining the user interface by
allowing the user to interface to the embedded system
through a web browser running on a standard personal
computer. Embedded Web Technology can also be used
to simplify an Embedded System’s internal network.

TERMS AND DEFINITIONS

To establish a common base of understanding, the
following definitions will be used:

Client—A logical entity that initiates a request for
data or for an action to take place. A client depends
upon the presence of an associated server to perform
requests. A client may refer to client software, client
hardware, or a combination of the two to implement a
logical client.

Server—A complementary logical entity to a
client. A server listens for client requests and services
those requests, whether the request is for data or for an
action to be performed. A server may refer to server

Copyright © 2001 by the American Institute of Aeronautics and
Astronautics, Inc. No copyright is asserted in the United States under
Title 17, U.S. Code. The U.S. Government has a royalty-free license
to exercise all rights under the copyright claimed herein for
Governmental Purposes. All other rights are reserved by the copyright
owner.

software, server hardware, or a combination of the two
used to implement a logical server.

Web client—A client that is designed to
communicate with servers using the Hypertext Transfer
Protocol.

Web server—A server that is designed to
communicate with clients using the Hypertext Transfer
Protocol.

EMBEDDED WEB TECHNOLOGY
INTRODUCTION

Embedded Web Technology was developed for the

Fluids and Combustion Facility (FCF) of the
International Space Station (ISS). FCF is being
developed to perform investigations in combustion
science and fluids physics in the microgravity
environment of the ISS. One of the goals of the FCF is
to be able to perform at least 10 investigations in each
discipline per year for 10 to 15 years. In order to meet
this goal, it is important for the software to be adaptable
to changing requirements. One of the areas of concern
is the user interface software that the ISS astronauts
will use to operate the FCF. The challenge facing the
FCF software engineers is that the laptop computer that
the user interface software will operate on is supplied
by the ISS, not FCF. In the event that the ISS decides to
upgrade the laptop computer, the FCF software team
will be required to modify existing user interface code
for a new environment while still developing new code
for possibly the old laptop computer and also the new
laptop computer. The FCF software engineers are also
faced with the task of developing a system that would
accommodate unknown experiments. This scenario can
be extended to any system where the users, hardware
and applications are unknown and the system is
expected to have along life.

The FCF software engineers realized that the
World Wide Web had already solved a similar problem.
With the World Wide Web, a person uses a web
browser to request a web page from a web server. In
this scenario, the web server and the web browser
interface is independent of the hardware and software
being utilized at the other end of the interface. Despite

2
American Institute of Aeronautics and Astronautics

this, the web page is successfully transmitted to the web
browser and properly displayed.

The World Wide Web is based on the Hypertext
Transfer Protocol (HTTP), the protocol used by web
servers and web browsers to communicate. The FCF
software engineers did an extensive search to find an
HTTP compliant web server that would fit the
requirements of FCF. FCF, being an embedded, real-
time system, would require the web server to be small,
operate under VxWorks®, and still allow the system to
meet its real-time requirements. The search failed to
find such a web server.
 The FCF software engineering team decided to
write their own web server and this proved successful.
The web server, known as Tempest, is HTTP
compliant. It implements two of the seven request
methods defined in the HTTP specification, GET and
HEAD. The GET method is a request by a web browser
for a file from the web server. The HEAD method only
requests header information. These two methods are the
only two required to be implemented to make a web
server HTTP compliant and also offer a degree of
security to the system by not allowing the web server to
accept a file from a web browser.

Tempest also met the other needs of FCF. It is
small, requiring less than 50K of memory in its minimal
configuration, does not take up a lot of disk space, and
has minimal impact on system performance. It is active
only during the times that a web browser is requesting a
file. It can operate at a low priority with adequate
response time for the user so that it does not interfere
with the real-time aspect of the system.

The successful implementation of Tempest made it
apparent that there are advantages to utilizing other
World Wide Web standards in an embedded system.
These standards allow embedded system projects to
take advantage of work being done by thousands of
developers, thus reducing the problems inherent in
developing and utilizing custom protocols.

The term “Embedded Web Technology” was the
name given to this merger of embedded systems with
World Wide Web Technology.

OVERVIEW OF THE WORLD WIDE WEB

The World Wide Web is a collection of protocol
standards that are controlled by the World Wide Web
Consortium®. The protocol standards promote evolution
of the World Wide Web and ensure its interoperability.

The key protocol standard behind the World Wide
Web is the Hypertext Transfer Protocol, HTTP,
specified in RFC 2616. HTTP is “an application-level
protocol for distributed, collaborative, hypermedia
information systems.” (RFC 2616).

HTTP is used to transfer information between a
web server and a web client, which is typically a web

browser such as Netscape. A typical web client request
of a service from a web server will consist of a GET
request. The web server responds to the GET request
from the web client by transmitting the requested
information, typically an electronic file.

The following is an example of the HTTP
messages that are exchanged when a web page gets
transferred from a web server to a web client. First, the
request from the client:

GET /index.html HTTP/1.0
Connection: Keep-Alive
User-Agent: Mozilla/4.7 [en] (WinNT; U)
Host: jgp6290.grc.nasa.gov
Accept: image/gif, image/x-xbitmap, image/jpeg,
image/pjpeg, image/png, */*
Accept-Encoding: gzip
Accept-Language: en
Accept-Charset: iso-8859-1,*,utf-8

The first line tells the server that this client wants
to get index.html and it is following version 1.0 of the
HTTP. The second line, Connection, requests that the
connection be left open. The third line, User Agent,
describes the web client making the request. The fourth
line, Host, is the IP address of the web client. The last
four lines describe the types of messages the web client
can receive.
 The response from the web server is the following:

HTTP/1.1 200 OK
Host: jgp6290/139.88.219.70
Date: Mon, 020 Aug 2001 17:27:31 GMT
Server: TempestJava 1.2 (NASA/GRC Java Version of
Tempest)
Connection: Close
Content-Length: 293 293
Content-Type: text/html

The first line tells the web client that the web
server understands HTTP 1.1 and that the request from
the client is allowed. The second line, Host, is the IP
address of the web server. The third line, Date, time
tags the message. The fourth line, Server, identifies the
web server software that is responding to the request.
The fifth line, Connection, tells the web client that the
web server will be closing this connection upon
completion of this transaction. The sixth line, Content-
Length, tells the web client how many characters to
expect in the file to be sent. The last line, Content-
Type, tells the web client that the data will be in text.
After this line, there will be a blank line and then the
file requested, index.html, will be sent to the web
browser.

In the event that the web page sent to the web
client contains references to image files, applets, etc.,

3
American Institute of Aeronautics and Astronautics

the web browser will make additional requests to the
web server for these resources. Each one of these
resources will require a full transaction similar to what
was just described.

There are many additional items that can be
included in a transaction that are described in RFC
2616. For a real-time, embedded system where
resources such as memory are limited, it is not
necessary to implement the entire protocol.

COMPARISON OF A TYPICAL WEB SERVER
ENVIRONMENT VERSUS AN EMBEDDED,

REAL-TIME ENVIRONMENT

A typical web server runs on a computer that is
running a nonrealtime operating system. The web
server software itself tends to be large and complex and
requires a lot of memory and disk space, on the order of
10 MB or more. The web servers are designed to run on
personal computers and general purpose workstations.

The embedded, real-time environment is much
more restricted. The system generally consists of an
embedded processor running a real-time operating
system and also running a real-time application.
Embedded systems have limited memory and disk
space that is not easily extensible.

The users of these two environments have different
needs of the systems. The user of the nonrealtime
environment is usually interested in obtaining static or
slowly changing information. This information is stored
in files and retrieved by the web browser for display by
the user. The user can read the information on the
display at his own pace or print it out and read it
without the aid of the browser. A user of a real-time
system, on the other hand, is interested in obtaining the
most current data from the system at regular intervals.
The user may require the capability to issue commands
to the embedded system.

PUTTING EMBEDDED SYSTEMS ON THE WEB

There are two problems that need to be solved in
order for an embedded system to become accessible on
the World Wide Web. One is providing a user interface
that provides the real-time interaction needed by the
user in order to properly interface to the system. The
other is to give the embedded system the capability to
serve web pages over the World Wide Web.

One feature of the web browser that helped bridge
the gap between the two environments is the addition of
Java™ applets. Applets are programs that are capable
of being executed by a web browser. They are written
in the Java™ language, compiled and then stored on the
web server’s computer. When a web page is transmitted
to a web browser, the web browser scans through the
web page, looking for, among other things, applet tags.

When an applet tag is found, the web browser
automatically makes another request to the web server
for the applet. The applet gets sent to the web browser
which in turn loads the Java™ Virtual Machine which
starts running the applet.
 In the typical web environment, applets provide an
interface that is dynamic but usually does not interact
with the web server’s computer. For security purposes,
applets are very restricted in what they can do in a web
browser environment. It is possible to bypass these
restrictions with security certificates if they are an
impediment.

One capability an applet has by default is the
ability to communicate back to the computer that served
it to the web browser. This communication can be
accomplished with basic socket technology, Java’s™
Remote Method Invocation (RMI), Common Object
Request Broker Architecture (CORBA®) technology, or
other protocols. RMI is a communication technology
specific to Java™ that allows networked Java™
programs to interface in a platform independent
manner. CORBA®, developed by the Object
Management Group™, is a technology that allows
networked programs to communicate in a common
manner that is independent of the underlying hardware,
operating system or language. With this capability, it is
possible to develop an applet that can interact
dynamically with an embedded, real-time system and,
thus, let the web browser provide a user interface that
meets the needs of the user.

On the embedded system side, the problem is
providing the capability to be a web server without
overburdening the system with all of the functionality
specified in the HTTP specification. The embedded
system software still needs to be able to perform real-
time command and control. This problem was solved
by the development of Tempest.

TEMPEST FEATURES

The Tempest software, which was written by
software engineers at the NASA Glenn Research Center
in Cleveland, Ohio, is a web server written specifically
for embedded, real-time systems. Tempest was
originally written for the VxWorks® operating system
from Wind Rivers Systems, Inc. and then ported to the
Java™ language so that it can run on any operating
system that has a Java™ Virtual Machine.

Tempest requires fewer memory resources than
web servers written for the typical web server
environment. Memory requirements are under 100 KB,
depending on how it is configured. The amount of disk
space is also under 100 KB with additional space
needed for the files that make up the web pages, images
and applets. Since Tempest is not intended to operate
as a general purpose web server, it is not necessary to

4
American Institute of Aeronautics and Astronautics

implement the entire HTTP specification. Only the
GET and HEAD request methods from the HTTP
specification are implemented. Methods that allow a
web browser to write to the web server are not
implemented. The responses generated by Tempest are
also limited to those that an embedded system would
need.

Tempest can also be run at a lower priority than
other application software running in the embedded
system. Requests from web browser are very brief so
Tempest can serve web pages and other resources at an
acceptable speed without having an impact on system
performance.

An optional capability requires the user to have an
identification and password in order to gain access to
the system. This provides a limited level of security to
the system. Other security features such as firewalls and
virtual private networks can be added without changing
the embedded system. It is much easier to have the
security features added on as separate entities rather
than built into the system. This allows for easier
upgrades to the security system and decouples the
security from the embedded system.

The user I.D.’s and passwords are stored in an
external file. New users can be added to the system
without having to recompile Tempest.

A configuration file that allows Tempest to
associate a user with a specific image file is another
feature. This allows a user to set up the system so that
when a remote user gains access to the embedded
system, the web page can be customized to that user on
the fly by displaying an image file created for that
specific user.
 Tempest also has configuration files that allow the
user to specify which remote clients have access to the
embedded system. Tempest utilizes a configuration file
to maintain a list of MIME types, used when
responding to a request to assist the web browser in
determining the type of data is being received.

All of the configuration files are read in by
Tempest when it starts up. Tempest first reads in a file
called tempest.sys that contains a list of the
configuration files. Updates to any of the configuration
files require the system to be restarted before the
changes take effect.

Web browsers are denied access to any file with a
“.sys” extension. If the configuration files use this
extension, it is not possible for the person using the web
browser to have them displayed.

Tempest will not process any request that contains
“..”. The “..” (double dot) is used on most computer
systems to refer to the parent directory on the disk. By
not allowing this, it is not possible for remote users to
snoop around the system.

Tempest has a feature known as Server Side
Includes (SSI). SSI is the ability of the web server to

dynamically alter a web page at the time of request.
Tempest accomplishes this by reading through any file
the has an extension of “.sht”, “.shtm” or “.shtml” and
searching for <Tempest> tags. These tags are a unique
feature of Tempest. When Tempest encounters one of
these tags, it processes the contents of the tag and
substitutes the tag with the result of the processing.

One of the tags is <Tempest image>. When this tag
is utilized in combination with the user I.D. and
password, Tempest is able to associate the user to an
image file and substitute in new html that will contain a
tag to an image file specific to that user. The images.sys
and users.sys configuration files need to be coordinated
for this to work.

The other tag is <Tempest execute=somecmd
param>. This tag causes Tempest to execute the
command specified in commands.sys that corresponds
to somecmd. The parameters to the command are
passed to the command. The resultant output from
executing the command is inserted into the web page.
Error messages are displayed if somecmd is not found
in commands.sys or the corresponding command is not
found.

The commands may be either commands that are
built into the operating system or commands written by
the developing team. This feature can be very useful
during the development stage as a debugging aid. The
output from various commands made to the embedded
system can be displayed in a web page. For example,
task information, network statistics, etc., can be
retrieved in real-time and be monitored from anywhere
by system engineers.

The following is an example of how tasking
information can be displayed. Here is the text from a
file called taskshow2.shtml:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML
3.2//EN">
<HTML>
 <HEAD>
 <TITLE>VxWorks Task Information</TITLE>
 <META HTTP-EQUIV="Author"
CONTENT="Joseph. G. Ponyik">
 <META HTTP-EQUIV="ReplyTo"
CONTENT="Joseph.G.Ponyik@grc.nasa.gov">
 </HEAD>
<BODY BGCOLOR="Aqua" TEXT="Black"
LINK="Blue" ALINK="Red" VLINK="Purple" >
 <H1 ALIGN=CENTER>VxWorks Operating
System Task Information</H1>

 <P><PRE>
 <TEMPEST EXECUTE=task 0 2>
 </PRE></P>
 <HR WIDTH="50%">

5
American Institute of Aeronautics and Astronautics

 <P><I>VxWorks </I>® is a registered trademark
of Wind Ri
ver Systems, Inc.</P>
</BODY>
</HTML>

When this file is requested by a web browser,
Tempest will scan the file and find the line that reads
<TEMPEST EXECUTE=task 0 2>. Tempest will then
match “task” against the contents of commands.sys.
Since this is a VxWorks® implementation, Tempest will
execute the taskShow command with the first two
parameters being 0 and 2. Tempest will then replace the
line with the results of taskShow. The resultant output
in a web browser will be similar to:

VxWorks® Operating System Task Information

The Java™ version of Tempest has features similar
to the VxWorks® version. All of the configuration files
except for commands.sys will work with both versions.
Commands.sys needs to be modified to include
commands that will work on the platform that Tempest
will be operating on. The <Tempest execute> tag also
includes a Wait=true|false|yes|no parameter and a
Message=”some message” parameter. The Wait
parameter indicates if Tempest should wait (yes or true)
for the command to finish execution. The Message will
be inserted into the web page if Wait is false or no.

The Java™ version of Tempest also includes a tag
to allow Tempest to call another Java™ class external
to Tempest and insert the resultant output into the web
page. The format is <Tempest Object=o Method=m
Args=a> where o is the class to be run, m is the method
to call and a are the arguments to be supplied in the
method call.

THE RESULTING IMPLEMENTATION

Utilizing Tempest, it is now possible to have an
embedded, real-time system appear as a node on the
World Wide Web. To the remote user, the embedded
system appears as a World Wide Web node. The remote
user simply needs a computer with a web browser
capable of running a Java™ applet. The remote user
only needs to enter the uniform resource locator (URL)
of the embedded system into the browser.

The embedded system needs to be up and running.
Minimally, it needs to have Tempest running and an
application to interface to the system and handle
requests from the user interface.

The web browser sends an HTTP message to the
embedded system, requesting the web page. If the user
needs to enter a user I.D. and password, Tempest

responds with a request for the user to be authenticated.
Once the user is authorized, Tempest retrieves the web
page from local storage. If the file has an extension of
“.sht”, “.shtm”, or “.shtml”, Tempest reads through the
file and processes any Tempest tags When this step is
complete, the web page is delivered to the web browser.

The web browser displays the web page and also
requests any additional resources from the embedded
system. These resources may include images and an
applet. When the applet gets sent to the browser, the
browser starts up its Java™ Virtual Machine which
starts up the applet.

The applet establishes a connection back to the
embedded system, utilizing a different TCP port form
the one being used by Tempest, which is typically 80.
While the connection is being established, the applet
also begins the user interface. Since Java™ supports
multitasking, the applet should be designed so that the

 NAME ENTRY TID PRI STATUS PC SP ERRNO DELAY
---------- ------------ -------- --- ---------- -------- -------- ------- -----
tExcTask _excTask 3e8a70 0 PEND 7b7fe 3e89cc 0 0
tLogTask _logTask 3e615c 0 PEND 7b7fe 3e60b4 0 0
tShell _shell 3ade1c 1 PEND 597f4 3adacc 1c0001 0
tTelnetd _telnetd 3c25c8 2 PEND 597f4 3c24dc 0 0
tWdbTask 58802 3af23c 3 PEND 597f4 3af0d8 0 0
tScsiTask _scsiMgr 3e31c8 5 PEND 597f4 3e315c 0 0
tNetTask _netTask 3dda6c 50 PEND 597f4 3dda14 0 0
tFtpdTask _ftpdTask 3bfb70 55 PEND 597f4 3bfa8c 0 0
tTftpdTask _tftpdTask 3bc9b8 55 PEND 597f4 3bc260 0 0
mon_tempestfb06e 392940 60 DELAY 2cafa 3928fc 0 5
http2 f9a5a 39917c 75 DELAY 2cafa 398dd4 1c0001 1
t7 _taskShow 37d0f0 76 READY 2f12e 37c360 0 0
tPortmapd _portmapd 3c109c 100 PEND 597f4 3c0f54 16 0
tempest f9a5a 38b3a8 100 PEND 597f4 38b2a4 0 0

VxWorks® is a registered trademark of Wind River Systems, Inc.

6
American Institute of Aeronautics and Astronautics

user interface screens run in a separate task from the
interface to the embedded system. This gives a
smoother running interface and also makes it easier to
recover from communication drops without locking the
user out.

By taking advantage of the CORBA® technology,
more flexibility is added to the system. CORBA®
provides an interface that is independent of the
underlying hardware platform, operating system and
implementing language. Future upgrades to the
embedded system or the web browser will be easier to
implement since the change will be transparent to the
other end of the interface.

OTHER ADVANTAGES

In addition to the above features, utilizing
Embedded Web Technology also provides an added
security feature. Since the web browser does not store
the applet permanently, the user interface software is
not accessible to unauthorized users once the web
browser is turned off. It is possible to configure present
day web browsers to eliminate the cache so that the
applet gets deleted.

User interface software upgrades are simpler with
Embedded Web Technology. Without Embedded Web
Technology, the user of the real-time system also needs
to have the user interface software stored locally. The
result is that the user is restricted to using only the
computer that has the user interface software loaded
and upgrades to the software can be more difficult to
obtain. The updates require the user to find out about
the upgrade and then a process needs to be put in place
to deliver the upgraded software to the user. The
upgraded software may also need to be capable of
running on various platforms, making upgrades more
difficult for the developer.

With Embedded Web Technology, the user
interface software is stored in the embedded system and
delivered to the user when it is needed. When the user
interface software is upgraded, it only needs to be
stored in the embedded system. The user gets the new
software the next time they access the system.

Tempest also provides the capability to provide
output to the remote user in any format the system
designer desires. Although the Tempest tag is typically
embedded into a web page that is html, it is possible to
set up a file that consists of only a Tempest tag calling a
local command that outputs something other than html,
such as XML. As an example, Tempest could be used
to feed real-time data into a database using XML.

SUMMARY

Embedded Web Technology provides for the
development of an embedded, real-time system that
appears to the users of the system as a node on the
World Wide Web. This capability provides for great
savings by eliminating the need to develop and
distribute user interface software that is platform
specific and somewhat cumbersome to configuration
manage.

Tempest software is a small, flexible web server
that makes it easy to interface to embedded systems. It
also has the potential to be an aid in debugging systems.

Tempest workshops have been held for customers
in the private sector. Customer remote data acquisition
and control applications include medical, tele-
communications, aerospace, factory automation,
instrumentation, automotive, building management and
education.

Tempest is available from the NASA Glenn
Research Center by contacting the Commercial
Technology Office at 216–433–3484.

REFERENCES

RFC 2616: Hypertext Transfer Protocol HTTP/1.1,

http://www.w3.org/Protocols/rfc2616/rfc2616.html
World Wide Web Consortium® http://www.w3.org/
XML http://www.w3.org/XML/
CORBA® and Object Management Group™

http://www.omg.org/
Java™ http://java.sun.com/

http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://www.www3.org/
http://www.w3.org/XML
http://www.omg.org/

	ABSTRACT
	TERMS AND DEFINITIONS
	OVERVIEW OF THE WORLD WIDE WEB
	PUTTING EMBEDDED SYSTEMS ON THE WEB
	TEMPEST FEATURES
	THE RESULTING IMPLEMENTATION

	OTHER ADVANTAGES

	REFERENCES

